Flexible Gabor - wavelet atomic decompositions for L 2 - Sobolev spaces
نویسنده
چکیده
In this paper we present a general construction of frames, which allows one to ensure that certain families of functions (atoms) obtained by a suitable combination of translation, modulation, and dilation will form Banach frames for the family of L2-Sobolev spaces on R of any order. In this construction a parameter α ∈ [0, 1) governs the dependence of the dilation factor on the frequency parameter. The well-known Gabor and wavelet frames (also valid for the same scale of Hilbert spaces) using suitable Schwartz functions as building blocks arise as special cases (α = 0) and a limiting case (α → 1), respectively. In contrast to those limiting cases, it is no longer possible to use group-theoretical arguments. Nevertheless, we will show how to constructively ensure that for Schwartz analyzing atoms and any sufficiently dense but discrete and well-structured family of parameters one can guarantee the frame property. As a consequence of this novel constructive technique, one can generate quasicoherent dual frames by an iterative algorithm. As will be shown in a subsequent paper, the new frames introduced here generate Banach frames for corresponding families of α-modulation spaces. Mathematics Subject Classification (2000). 42C15, 46S30, 49M27, 65T60
منابع مشابه
Banach frames in coorbit spaces consisting of elements which are invariant under symmetry groups
This paper is concerned with the construction of atomic decompositions and Banach frames for subspaces of certain Banach spaces consisting of elements which are invariant under some symmetry group. These Banach spaces – called coorbit spaces – are related to an integrable group representation. The construction is established via a generalization of the well-established Feichtinger-Gröchenig the...
متن کاملPerturbations of Banach Frames and Atomic Decompositions
Banach frames and atomic decompositions are sequences that have basis-like properties but which need not be bases. In particular, they allow elements of a Banach space to be written as linear combinations of the frame or atomic decomposition elements in a stable manner. In this paper we prove several functional-analytic properties of these decompositions, and show how these properties apply to ...
متن کاملTight wavelet frames in Lebesgue and Sobolev spaces by Lasse Borup , Rémi Gribonval and Morten Nielsen
We study tight wavelet frame systems in Lp(R), and prove that such systems (under mild hypotheses) give atomic decompositions of L p(R) for 1 < p < . We also characterize Lp(R) and Sobolev space norms by the analysis coefficients for the frame. We consider Jackson inequalities for best mterm approximation with the systems in Lp(R) and prove that such inequalities exist. Moreover, it is proved t...
متن کاملFrames and Coorbit Theory on Homogeneous Spaces with a Special Guidance on the Sphere
The topic of this article is a generalization of the theory of coorbit spaces and related frame constructions to Banach spaces of functions or distributions over domains and manifolds. As a special case one obtains modulation spaces and Gabor frames on spheres. Group theoretical considerations allow first to introduce generalized wavelet transforms. These are then used to define coorbit spaces ...
متن کاملAtomic and Molecular Decompositions in Variable Exponent 2-microlocal Spaces and Applications
In this article we study atomic and molecular decompositions in 2-microlocal Besov and Triebel–Lizorkin spaces with variable integrability. We show that, in most cases, the convergence implied in such decompositions holds not only in the distributions sense, but also in the function spaces themselves. As an application, we give a simple proof for the denseness of the Schwartz class in such spac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005